Zygmund-Type Spaces on the Unit Ball

نویسنده

  • Congli Yang
چکیده

Let H B denote the space of all holomorphic functions on the unit ball B ⊂ C. This paper investigates the following integral-type operator with symbol g ∈ H B , Tgf z ∫1 0 f tz Rg tz dt/t, f ∈ H B , z ∈ B, whereRg z ∑n j 1 zj∂g/∂zj z is the radial derivative of g. We characterize the boundedness and compactness of the integral-type operators Tg from general function spaces F p, q, s to Zygmund-type spaces Zμ, where μ is normal function on 0, 1 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Products of Radial Derivative and Multiplication Operator between Mixed Norm Spaces and Zygmund–type Spaces on the Unit Ball

In this paper, we obtain some characterizations of the boundedness and compactness of the products of the radial derivative and multiplication operator RMu between mixed norm spaces H(p, q, φ) and Zygmund-type spaces on the unit ball. Mathematics subject classification (2010): 47B38, 47G10, 32A10, 32A18.

متن کامل

Compact composition operators on certain analytic Lipschitz spaces

We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.

متن کامل

Extended Cesáro Operators on Zygmund Spaces in the Unit Ball

Let g be a holomorphic function of the unit ball B in the ndimensional space, and denote by Tg and Ig the induced extended Cesáro operator and another integral operator. The boundedness and compactness of Tg and Ig acting on the Zygmund spaces in the unit ball are discussed and necessary and sufficient conditions are given in this paper.

متن کامل

Essential norm estimates of generalized weighted composition operators into weighted type spaces

Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...

متن کامل

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011